​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑
第一作者:胡安俊
通讯作者:李白海,王显福,熊杰
通讯单位:电子科技大学

锂(Li)金属具有高的理论比容量和最低的电化学势,被认为是高能电池负极的最终选择。由于Li的电化学势比电解质低,因此Li金属会自发地与电解质中的有机成分发生反应,并形成固态电解质界面相(SEI)。SEI的性质会强烈影响Li电镀/剥离行为,在很大程度上决定了Li金属负极的实际应用。

通常,Li沉积可能发生在SEI内或SEI/Li界面处,这取决于两个相互竞争的过程:从SEI到Li负极的Li+扩散速率以及从负极到SEI的电子隧穿能力。如果SEI中的Li+传输足够快,且SEI表现出足够的绝缘性以防止电子从Li负极转移到SEI,则Li+倾向于沉积在SEI/Li界面处;否则,它可能会发生在SEI层的内部。后者形成的Li核会与负极完全失去电接触,从而因局部电场分布不均而引发不均匀的Li沉积。此外,这些在SEI内形成的Li枝晶也可能破坏SEI层,从而导致新鲜Li和电解质间发生更多的副反应。因此,为避免SEI内的Li沉积,理想的SEI层必须具有高的离子电导率和电子绝缘性。此外,良好的界面机械稳定性对于SEI承受巨大的体积变化和抑制SEI/Li界面处的Li枝晶生长也至关重要。

SEI层的性质主要由其化学成分和结构决定。通常,SEI层由无机内层和有机外层组成。致密的无机内层主要由LiF、Li2CO3和Li2O组分构成,它们紧密粘附在Li负极表面。在这三种组分中,LiF具有最高的电子隧穿势垒和优异的界面机械强度。因此,LiF的增加能够降低SEI/Li界面处的电子隧穿概率,从而抑制Li枝晶渗透到SEI中。然而,LiF的高离子迁移势垒限制了Li+在SEI中的传输动力学,导致Li电镀/剥离的过电势较大(尤其在高电流密度下)。最近,通过调控SEI的组成和结构均匀性来增强Li+扩散动力学以及理解SEI的形成机理取得了一些进展。然而,尚未阐明SEI作为Li+传输介质和SEI组分对离子扩散行为的确切作用。因此,为了在实际的高电流密度下获得稳定的Li负极,从理论和实验上理解SEI内的Li+传输机理至关重要。

【工作介绍】
基于此,电子科技大学熊杰教授团队在国际顶级期刊Energy Environ. Sci.上发表题为“An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode”的研究工作。该工作通过在Li金属负极上构建了由锂锑合金(Li3Sb)和氟化锂(LiF)组成的人工混合SEI层,以揭示该混合SEI中的Li+扩散行为机制。实验和理论证明,作为离子通道的Li3Sb消除了界面层内的Li+扩散势垒,而电绝缘的LiF充当了SEI/Li界面处的电子阻挡屏蔽层,在SEI/Li界面处实现了均匀的Li沉积。此外,这种人工混合界面相层保留了Li3Sb和LiF的高界面机械稳定性,有效抑制了Li枝晶生长。因此,基于改性Li负极的对称电池在1360次循环中实现了高的Li电镀/剥离稳定性,并在20 mA cm-2的电流密度下表现出低的电压极化(100 mV)。进一步地,通过与改性Li负极配对,0.4 Ah级锂硫软包电池可以实现325.28 Wh kg-1的高比能量密度,在高硫负载(6 mg cm-2)和低电解液/硫比(3 µl mg-1)下稳定循环60次,且容量保持率高达91.5%。这种有效的改性策略和相应的机理理解为在实际高倍率条件下稳定Li金属负极提供了思路。

【文章内容】
1. 人工混合界面相的设计原则
通过DFT计算证实了人工混合SEI层的优势。采用具有最低表面能的Li3Sb(110)和LiF(001)的表面模型来研究Li+吸附和迁移动力学。通过不同Li+吸附位点的对比,Li2nd-top位点(1.04 eV)和F-top位点(0.71 eV)被确定为Li+吸附的最稳定位点。此外,Li3Sb比LiF具有更大的吸附能,表明Li3Sb对Li+表现出更高的亲和力。同时,差分电荷密度证明Li+与Li3Sb(110)的界面相互作用比LiF(001)表面更强。Bader电荷分析表明从Li+到Li3Sb(110)表面的配位原子转移的电子数(0.12个电子)远高于Li/LiF界面(0.04个电子)。此外,通过CI-NEB方法研究了Li+在最稳定的吸附位点间的扩散动力学发现,Li3Sb(110)和LiF(001)表面的Li+扩散能垒分别为0.09 eV和0.28 eV,均低于Li(001)表面(0.39 eV)。因此,Li3Sb(110)对Li+更强的吸附能可以优先将Li+富集在其表面,并且Li+的较低扩散能允许Li+传输以快速通过SEI层。

进一步地,为了从理论上探索Li3Sb和LiF对Li枝晶抑制的影响,计算了界面性质,包括SEI/Li界面的形成能(Ef)、应变能(ζ)、界面能(σ)和粘附功(Wadh),来评估人工混合SEI的机械稳定性。其中,σ和Wadh的结果用于评估界面机械稳定性,较高的Wadh表明更好的界面机械强度。结果发现,Li3Sb/Li界面比LiF/Li具有更高的Wadh(1.513 J m-2)和更低的σ(0.159 J m-2),表明前者界面更稳定。因此可以预见,将Li3Sb组分掺入富LiF的SEI层有望实现增强的Li+吸附特性和扩散动力学并稳定Li负极。
​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑
图 1 人工混合SEI的设计原则及理论评估。

2. 人工混合界面相层的构建
通过在室温下将Li金属浸入三氟化锑(SbF3)溶液(DME作溶剂)中,在Li金属表面上构建了由LiF和Li3Sb构成的人工混合界面相层。同时,当Li金属浸入有机溶剂时,在其表面会自然形成离子导电的SEI层(如Li2CO3、LiOH、Li2O等)。随着SbF3浓度的增加,处理后的Li金属表面范围为深棕色至深黑色,缩写为LiF/Li3Sb-x(x分别为1、5、10和50,x表示SbF3的摩尔浓度)。扫描电子显微镜(SEM)显示Li金属表面生成的人工混合SEI层由球形聚集体组成,SEI层的厚度约5 µm。界面层的能量色散谱(EDS)映射和三维(3D)重建图显示出Li、Sb和F元素的均匀分布,这有利于建立均匀分布的电场和离子浓度以促进SEI内Li+的均匀扩散。同时,LiF和Li3Sb的致密表面形态有助于提高表面机械稳定性以抑制Li枝晶。此外,人工混合SEI层的最优厚度为5 μm,此人工混合SEI层表现出最小的界面电阻和优异的循环稳定性,具有稳定的界面性质。

通过X射线衍射(XRD)和拉曼光谱确定了人工混合SEI的主要组分是Li3Sb和LiF。此外,通过X射线光电子能谱(XPS)和飞行时间二次离子质谱(TOF-SIMS)研究了界面的化学成分。可以确认SEI的上表面区域主要由Li3Sb、无定形SbOx和Li基化合物(LiF、LiOH、Li2CO3和Li2O)组成。而内部区域主要由Li3Sb和LiF构成。采用AFM压痕法研究了人工混合SEI改性Li负极的机械强度。与纯Li(486 MPa)相比,混合SEI层具有更高的机械强度(676 MPa),对循环过程中的体积变化具有强大的耐受性,能够有效抑制Li枝晶。此外,混合SEI层对有机电解质表现出可忽略不计的接触角,这有利于Li+通量的均匀分布,并促进Li成核。混合SEI层的离子电导率和电阻率计算结果分别为1.01×10-5 S cm-1和3.8×104 Ω cm。如此高的离子电导性和电绝缘性有望避免Li+人工SEI/电解质界面处的直接还原,并在界面层下方实现均匀的Li沉积。
​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑
图2 人工混合SEI的构建和表征。

3. 人工混合界面相层改性Li负极的电化学性能
为了验证SEI改性Li负极的优势,首先研究了人工混合SEI层的成核过电势。改性Li负极具有较低的成核过电势(29 mV),表明人工混合SEI层允许快速的Li+穿过SEI层并促进均匀的Li成核。在5 mA cm-2的电流密度和5 mAh cm-2的容量下,基于改性Li负极的对称电池能够稳定循环600小时以上,且过电势低于30 mV。而纯Li表现出较大的过电势(50 mV以上),并且在84小时后短路。通过ESI测量比较了不同对称电池在不同状态下的电荷转移电阻(Rct)。纯Li负极的Rct在100次循环后不断增加,这表明循环过程中普通SEI中的Li+扩散有限。相反,人工混合SEI层对电解质表现出惰性,电阻更低,并且即使在循环后也几乎保持不变。因此,混合界面相层中的高离子电导率更有利于快速Li+扩散和均匀的Li沉积。此外,界面层的高机械强度可以承受体积波动并提供良好的机械稳定性,以抑制循环过程中Li枝晶的生长。人工混合SEI层的优越性尤其体现在20 mA cm-2的高电流密度下。纯Li的对称电池表现出严重的电压波动,在如此高的电流密度下无法维持循环。相反,基于改性Li负极的对称电池可以在1360次循环内表表现稳定的Li电镀/剥离行为,并且具有100 mV的低极化,这远远优于最新关于人工SEI改性的报道。结果表明,混合SEI层的快速Li+扩散动力学不仅可以实现低过电势,而且可以在高电流密度下实现平坦且稳定的长循环。

此外,通过SEM和表面3D形貌进一步验证了人工混合SEI层抑制Li枝晶生长的作用。纯Li负极上的Li沉积表现出不均匀和不受控制的Li枝晶生长,这会导致随后循环过程中SEI的破裂。相比之下,人工混合SEI层在Li沉积后保持完整和均匀,并且致密的Li沉积在混合SEI层下方形成。此外,混合界面相层稳定Li负极的优点在纽扣锂硫电池中得到进一步验证。这些结果进一步证明了人工混合SEI层改性的Li负极在高电流密度下实现界面快速Li+传输和抑制Li枝晶生长方面的优越性。
​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑
图3 人工混合SEI改性Li负极的对称电池的电化学稳定性评估。

4. Li+在人工混合界面相层中的传输机制
人工混合SEI层的作用对于优异的电化学性能和Li沉积行为至关重要。当SEI表现出高电子隧道势垒而SEI中的Li+扩散速率足够快时,Li沉积可能发生在SEI/Li界面。为了更好地阐述Li沉积,通过有限元模拟(FES)对SEI内的电势场和Li+通量的分布进行了可视化模拟。与普通SEI相比,人工混合SEI层在整个区域内显示出更均匀的电场分布,且沿SEI法线Y方向具有更低的电势梯度。此外,人工混合SEI层可以重新分配Li+通量,同时在SEI中提供更快的Li+传输。因此,人工混合SEI层中均匀分布的Li+通量和电场有利于促进无枝晶Li沉积。

另一方面,平均静电势曲线表明在界面处Li金属中的电子比SEI组分中的电子具有更高的能量(更低的功函数),因此电子倾向于从Li转移到SEI侧。结果,在界面处建立了内建电场,方向从Li指向SEI侧。此外,宏观平均静电势之间的差异决定了内部电场的强度。显然,LiF(001)/Li(001)中的差值(10.404 eV)远大于Li3Sb(110)/Li(110)界面(5.862 eV),这意味着LiF(001)/Li(001)界面的电子进入SEI的隧穿势垒可能更高。事实上,LiF是一种优异的绝缘体(带隙9.14 eV),可以有效地阻止LiF中的电子隧穿。相比之下,Li3Sb是一种半导体(带隙0.70 eV),并且费米能级周围的态密度(DOS)表明电子可能从Li负极迁移到Li3Sb内部,然后与Li+结合在SEI内部形成Li金属核。然而,与界面Li的DOS曲线相比,LiF的DOS特性相当弱。有理由相信,远离界面处的LiF内部会阻止SEI内部电子的进一步隧穿,并导致界面处的Li沉积。总之,LiF的电子绝缘效应和Li3Sb的快速传输特性的协同效应使Li+不会在SEI表面还原,而是使Li+快速扩散穿过SEI层,从而在SEI/Li界面实现无枝晶Li沉积。
​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑
图4 有限元模拟和机理分析。

5. 人工混合界面相层改性Li负极在实际软包电池的应用
通过构造具有高面积硫负载(6 mg cm-2)和低电解液/硫比(3 µl mg-1)的0.4 Ah锂硫软包电池以评估人工混合SEI层改性Li负极在实际软包电池中的优势。其中,人工混合SEI改性的Li负极可以大规模生产(100×250 mm),即使在严重变形下也表现出优异的柔韧性。0.4 Ah软包电池在平坦和弯曲状态下的充放电曲线都可以清楚地观察到位于~2.3V和2.1V(电压差ΔE=203 mV)的电压平台,这表明与纽扣电池相比,软包电池的电压差可以忽略不计。该软包电池在231.45 mA g-1的电流密度下能够输出1034.19 mAh g-1的放电比容量,对应于325.28 Wh kg-1的能量密度。此外,软包电池在60次循环后仍能保持91.5%的高容量保持率,并且即使在50次循环内弯曲状态下也几乎没有波动。通过与之前报道的锂硫软包电池进行比较,人工混合SEI层改性Li负极在平衡循环寿命和能量密度方面显现优势。最后,该软包电池能够成功地为LED、移动手机以及电风扇进行正常供电,表明改性Li负极赋予了软包电池在实际应用条件下的巨大潜力。
​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑
图5 人工混合SEI改性Li负极在实际软包电池中的应用。

【结论】
总之,人工混合SEI层的构建对于稳定Li负极的有效性已通过实验和理论上得到证明。绝缘性LiF组分能够将来自Li负极的隧道电子限制在SEI中,而高离子电导率的Li3Sb为Li+快速穿过SEI提供了离子通道,它们协同作用实现了在Li/SEI界面处无枝晶Li沉积。此外,人工混合SEI层的高界面机械强度和良好的电化学稳定性抑制了循环过程中Li枝晶生长。最后,其实际应用也在高硫负载和低电解液/硫比的锂硫软包电池中得到了展示。这项工作阐明了人工混合SEI构造在稳定Li金属负极方面的作用,也为开发其他金属负极(如Na和Zn)提供了思路。

A. Hu, W. Chen, X. Du, Y. Hu, T. Lei, H. Wang, L. Xue, Y. Li, H. Sun, Y. Yan, J. Long, C. Shu, J. Zhu, B. Li, X. Wang and J. Xiong, Energy Environ. Sci., 2021, DOI:10.1039/d1ee00508a
https://doi.org/10.1039/D1EE00508A

Joule:微观结构设计助力提高固态电池中正极活性物质利用率

2021-06-25

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

Joachim Maier/胡勇胜教授等人Nature综述:钠电能否上位?

2021-06-25

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

北工大汪浩&张倩倩教授:金属有机框架修饰隔膜实现无枝晶金属锂负极

2021-06-25

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

吉林大学蒋青&杨春成教授等:仙人球状铋纳米球/氮掺杂碳纳米网复合材料表现出最佳的储钾性能

2021-06-25

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

悉尼大学陈元教授:可折叠和层间距可调的石墨烯纸作为钠离子电池高面容量电极

2021-06-25

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

光伏圈大爆炸!国家能源局:正式启动分布式整县推进工作,政府安装比例不低于50%

2021-06-25

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

新技术表征钴酸锂,Nature!

2021-06-24

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

汪淏田团队:电催化析氧反应的稳定性挑战,从机理理解到反应器设计

2021-06-24

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

西交大宋江选教授:五元环氮氧自由基助力高电压水系有机液流电池发展

2021-06-24

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

清华大学朱永法教授:具有强还原能力和强内建电场的超分子锌卟啉光催化剂用于高效产氢

2021-06-24

​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑


​电子科技大学熊杰团队:实用化锂金属负极人工混合SEI的构筑

本文由能源学人编辑liuqiwan发布整理,非特别说明为独家版权,转请注明出处:https://nyxr-home.com/52272.html

参考文献: